sample. Fourier transformation of the free induction signal gives the ordinary high resolution spectrum. ${ }^{2,3}$ The advantage of obtaining the spectrum by this indirect procedure is that the free induction signal is obtained rapidly, so that in a given length of time it is possible to apply the pulse repetitively and add the free induction signals coherently in a digital computer or time-averaging device. As a result, a given signal: noise level may be achieved in a much shorter time than with conventional time-averaging procedures. The theoretical saving in time is given approximately by Δ / r, where Δ is the total range of chemical shifts that must be covered and r is the width of a typical line. ${ }^{2}$ For protons at 60 MHz this theoretical ratio is 500 . In practice, a time saving of a factor of at least 100 (or equivalently an improvement in signal: noise of 10) has been demonstrated. ${ }^{2}$

The Fourier transform method should be even more valuable for nuclei other than hydrogen, where Δ is large and lines are often sharp. For example, for ${ }^{13} \mathrm{C}$ at 15 MHz , with $1-\mathrm{Hz}$ line width, $\Delta / r>3000$, and at 55 $\mathrm{MHz} \Delta / r \sim 12,000$. However, application of the Fourier transform technique to nuclei, such as ${ }^{13} \mathrm{C}$, with relatively long spin-lattice relaxation times $\left(T_{1}\right)$ has been hampered by the fact that the time interval between successive pulses must in general be long relative to T_{1} to permit the nuclear spin system to return to equilibrium. We demonstrate here a new method by which the equilibrium magnetization of nuclei with long T_{1} may be restored rapidly and full advantage taken of the Fourier transform technique. We call the procedure the "driven equilibrium Fourier transform" (DEFT) method.

Consider, with the aid of Figure 1, the behavior of the macroscopic magnetization \mathbf{M} in a standard Fourier transform pulse experiment and in a DEFT experiment. Initially \mathbf{M} lies along the z axis (the direction of applied field H_{0}). Application of a 90° pulse along the x axis in the coordinate frame rotating at the Larmor frequency causes \mathbf{M} to tip into the $x y$ plane and to lie along the y axis. The signal induced in the coil along the laboratory fixed y axis, shown also in Figure 1, decays both as a result of spin-spin relaxation in a time T_{2} and as a result of magnetic field inhomogeneity, ΔH_{0}, in a time $T_{2}^{*} \approx \pi / \gamma \Delta H_{0} . \quad T_{2}^{*}$ is usually less than 2 sec , and for most liquid samples governs the decay rate of the signal. Thus spectral information can be accumulated after each 90° pulse for a period of ~ 2 sec at most. For nuclei in most small molecules $T_{1} \approx$ T_{2}, and in those cases where T_{1} is not much longer than $T_{2}{ }^{*}$, magnetization along the z axis is reestablished spontaneously by natural relaxation processes concurrently with the $x y$ dephasing, and the pulse may be repeated. However, if $T_{1} \approx T_{2} \gg T_{2}^{*}$, repetition of the pulse after a time $T_{2}{ }^{*}$ results in a free induction signal that is severely attenuated.

Suppose that at a time τ immediately after decay of the initial free induction, a 180° pulse is applied. As Hahn ${ }^{4}$ first showed, the dephasing due to field inhomogeneity is largely reversible, and at time 2τ the resultant refocussing causes an "echo"-two free induction signals back to back. We now propose that
(3) A. Abragam, "The Principles of Nuclear Magnetism,' Clarendon Press, Oxford, 1961.
(4) E. L. Hahn, Phys. Rev., 80, 580 (1950).

Figure 1. Response to pulse sequences for ${ }^{13} \mathrm{C}$ in 60% enriched $\mathrm{CH}_{3}{ }^{13} \mathrm{COOH}$ (neat liquid). Upper trace shows signals obtained for a normal Fourier transform experiment in which 90° pulses are applied at $2-$ sec intervals. Responses to the 1 si , 2nd, and $20 \mathrm{ch}_{\mathrm{h}}$ pulses are shown. Lower trace shows signals obtained in a DEFT experiment, with an indication of the be avior of the magnetization vector. Each sequence, again spaced at $2-s e c$ intervals, begins with a 90° pulse followed after 0.2 sec by a 180° (refocussing) pulse. At the peak of the echo an additional 90° pulse restores the magnetization to the z axis.
precisely at the peak of echo, as the nuclei are back in phase, a second 90° pulse be applied. \mathbf{M} is then restored to the z axis. Its magnitude is nearly equal to the initial magnetization if T_{2} is long, since little irreversible dephasing has occurred. Thus the DEFT method provides an almost complete reestablishment of the equilibrium magnetization in a time much less than T_{1} and permits rapid initiation of a new pulse sequence.

Figure 1 shows a test of the DE'FT method for ${ }^{13} \mathrm{C}$ in 60% enriched $\mathrm{CH}_{3}{ }^{13} \mathrm{COOH}$, where $T_{1} \approx 50 \mathrm{sec}$. It is apparent that fast repetition of 90° pulses, as in the usual Fourier transform procedure, results in appreciable attenuation of the signal following the second and subsequent pulses. The DEFT method, on the other hand, gives almost undiminished signals even with fast repetition rates for the pulse sequence. The exact enhancement factor for DEFT relative to ordinary Fourier transform nmr depends upon T_{1}, T_{2}, and the effect of diffusion in a magnetic field gradient. Further details of the method will be published.

DEFT nmr promises to be a powerful technique in enhancing signals for many nuclei of spin $1 / 2$ which have long T_{1} and T_{2}, low sensitivity, and in some cases occur at low natural abundance. In addition to ${ }^{13} \mathrm{C}$, which has been studied here, other suitable nuclei include ${ }^{15} \mathrm{~N},{ }^{57} \mathrm{Fe}$ in diamagnetic compounds, ${ }^{31} \mathrm{P}$, and ${ }^{183} \mathrm{~W}$.

Edwin D. Becker, James A. Ferretti National Institutes of Health Blethesda, Maryland 20014

Thomas C. Farrar
Ne'tional Bureau of Standards Gaithersburg, Maryland 20234

Received November 13, 1969

Protonated 1,6-Methanocyclodecapentaene, a Potentially Antihomoaromatic Species

Sir:
There has been much interest recently in the protonation of the $4 n(n=2)$ polyene, cyclooctatetraene, to yield the homoaromatic $4 m+2(m=1)$ species, monohomotropylium ion. ${ }^{1}$ We now report the protonation of a $4 n$
(1) For leading references, see S. Winstein in "Aromaticity," Special Publication No. 21, The Chemical Society, London, 1967, p 5; see also, S. Winstein, Quart. Rev. (London), 23, 141 (1969).

Figure 1. The $100-\mathrm{MHz}$ nmr spectrum of II (temperature ca. -85°, sweep width $=1000 \mathrm{~Hz}$) in $\mathrm{FSO}_{3} \mathrm{H}-\mathrm{SO}_{2} \mathrm{ClF}(1: 2, \mathrm{v} / \mathrm{v}) ; \mathrm{CHDCl}$, internal standard ($\tau 4.70$).
$+2(n=2)$ aromatic, 1,6-methanocyclodecapentaene (I), to give the corresponding $4 m(m=2) \pi$-electron cation (II), potentially antihomoaromatic. ${ }^{2}$

Extraction of I from a $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution into a $\mathrm{FSO}_{3} \mathrm{H}$-$\mathrm{SO}_{2} \mathrm{ClF}(1: 2, \mathrm{v} / \mathrm{v})$ solution at -78° in an nmr tube proceeds smoothly to give II. ${ }^{5}$ That the carbon skeleton of I remains intact is shown by the fact that quenchin: 3 of the acid solution in sodium bicarbonate buffered methanol at -78° gives $85-90 \%$ recovery of I. Vogel has previously reported that treatment of I with a mixture of deuteriotrifluoroacetic acid in ether containing a catalytic amount of deuteriosulfuric acid results in deuterium incorporation at the $2,5,7$, and 10 positions (the four α positions). ${ }^{6}$ Therefore, we a priori expected protonation to occur at the 2 position, and the nmr spectrum (60 and 100 MHz) of the dark red solution is in complete accord with these expectations. Thus the methylene protons of the bridge appear at $\tau 7.78$ and $8.42\left(J_{11 \mathrm{a}, 11 \mathrm{~b}}=-9.3 \pm 0.3 \mathrm{~Hz}\right){ }^{7}$ while the methylene protons attached to C_{2} appear as an AB quartet at $\tau 5.54$ and $6.10\left(J_{2 \mathrm{a}, 2 \mathrm{~b}}=-24.9 \pm 0.1 \mathrm{~Hz}\right)^{7}$ with the lower half doubled due to coupling with $\mathrm{H}_{3}\left(J_{2 a, 3}=5.8 \pm 0.2\right.$ Hz). The seven olefinic protons appear as complex absorptions in the τ 1.5-2.7 region (see Figure 1).

The solution of the olefinic pattern was made possible through the use of protonated I- $\alpha-d_{4}$ (see Figure 2) and extensive decoupling experiments, all at 100 MHz . The only assumption made was that H_{9} absorbs at lower field than H_{8}, which is quite reasonable since C_{9} bears charge directly whereas C_{8} does not. The derived chemical shifts and coupling constants are compiled in Table I.
(2) To our knowledge, two other potentially antihomoaromatic systems have been reported. These are the protonated benzenes ${ }^{3}$ and protonated trans-15,16-dimethyldihydropyrene. ${ }^{4}$ The former show no evidence for antihomoaromaticity, while the data for the latter are not sufficiently complete to allow a decision,
(3) G. Olah, J. Amer. Chem. Soc., 87, 1103 (1965).
(4) J. B. Phillips, R. J. Molyneux, E. Sturm, and V. Boekelheide, ibld., 89, 1704 (1967).
(5) The solution of II is quickly cooled in liquid nitrogen and the nmr spectrum observed at $c a .-85^{\circ}$. If the solution is allowed to warin to -63°, a rearrangement to another species takes place ($t 1 / 2 c a .2$ hri; this rearrangement will be the subject of a future report.
(6) E. Vogel in "Aromaticity," Special Publication No. 21, The Chemical Society, London, 1967, p 113.
(7) (a) M. Barfield and D. M. Grant, J. Amer. Chem. Soc., 85, 1899 (1963); (b) R. C. Cookson, T. A. Crabb, J. J. Frankel, and J. Hude:, Tetrahedron, Suppl., 7, 355 (1966).

Figure 2. The $100-\mathrm{MHz}$ nmr spectra (temperature $c a .-85^{\circ}$, sweep width $=500 \mathrm{~Hz}$): A, olefinic region of protonated $\mathrm{I}-\alpha-d_{4}$ in $\mathrm{FSO}_{3} \mathrm{H}-\mathrm{SO}_{2} \mathrm{ClF}(1: 2, \mathrm{v} / \mathrm{v})$; deuterons decoupled; B , same as A , but with proton at C_{2} also decoupled. [Additional decoupling of doublet centered at $\tau 1.96\left(\mathrm{H}_{9}\right)$ results in collapse of the doublet centered at $\tau 2.43\left(\mathrm{H}_{3}\right)$.]

Table I. Nuclear Magnetic Resonance Data for the Olefinic Region of Protonated 1,6-Methanocyclodecapentaene ${ }^{a}$

Proton	Chem shift $^{b}(\tau)$	Coupling constant (Hz)
H_{3}	2.21	$J_{5,4}=10.0 \pm 0.5$
H_{4}	2.56	$J_{4,5}=6.5 \pm 0.2$
H_{5}	1.52	
H_{7}	2.12	$J_{7,8}=9.0 \pm 0.5$
H_{8}	2.43	$J_{8,9}=9.0 \pm 0.5$
H_{9}	1.96	$J_{9,10}=8.0 \pm 0.5$
H_{10}	2.68	

${ }^{a}$ In $\mathrm{FSO}_{3} \mathrm{H}-\mathrm{SO}_{2} \mathrm{ClF}(1: 2, \mathrm{v} / \mathrm{v})$ at $\mathrm{ca} .-85^{\circ} .{ }^{b}$ Chemical shifts measured relative to internal $\mathrm{CHDCl}_{2}(\tau 4.70)$.

Two main questions arise concerning the electronic structure of II. The first is whether or not II is antihomoaromatic. As indicated in II, no substantial $\mathrm{C}_{1}-\mathrm{C}_{3}$ interaction can be supported on the basis of the nmr spectrum. Thus the very large, presumably negative, ${ }^{7,8 a} J_{2 a, 2 b}$ indicates the $\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$ bond angle is abnormally large ${ }^{8 \mathrm{~b}}$ (compare the much smaller geminal C_{2} couplings of ${ }^{13}-16 \mathrm{~Hz}$ in III ${ }^{10}$ and IV ${ }^{6}$), which makes $\beta_{1,3}$ very small. Apparently, II attempts to avoid 1,3 overlap, ${ }^{11}$ which would destabilize it. This is borne out by the lack of any evidence for a paramagnetic ring current. The seven olefinic protons appear at an average chemical shift of $\tau 2.21$, a mere 0.12 ppm higher than the average chemical shift of the seven olefinic protons of
(8) (a) In so far as we know, $J_{2 \mathrm{a}, 2 \mathrm{~b}}$ is the largest negative $\mathrm{H}-\mathrm{H}$ coupling constant yet reported. (b) $J_{13} \mathrm{C}_{2}, \mathrm{H}_{2}=115 \pm 2 \mathrm{~Hz}$ (obtained, at 60 MHz , after summation of 180 scans by the Time Averaging Computer) supports this idea and also represents the lowest reported $J_{1{ }^{3} \mathrm{C}, \mathrm{E} .{ }^{9}}$
(9) W. McFarlane, Quart. Rev. (London), 23, 187 (1969).
(10) H. D. Roth, Ph.D. Dissertation, Köln, 1965, p 25.
(11) Inspection of models indicates the p orbitals at C_{1} and C_{3} can readily become virtually orthogonal.
monohomotropylium ion. ${ }^{1}$ Furthermore, the average chemical shift of the bridge protons, $\tau 8.10$, is only 0.24 ppm downfield from the average shift of the bridge protons of III, $\tau 8.34,{ }^{10}$ hardly an impressive deshielding when compared to the shielding of the bridge protons $(2.88 \mathrm{ppm})$ of the homoaromatic V, relative to VI. ${ }^{12}$

V

VI

The second question of electronic structure is what is the extent of $\mathrm{C}_{1}-\mathrm{C}_{6}$ overlap (i.e., what is the $\mathrm{C}_{1}-\mathrm{C}_{6}$ distance or the $\mathrm{C}_{1}-\mathrm{C}_{11}-\mathrm{C}_{6}$ bond angle) ? ${ }^{13}$ The usual nmr criterion for such overlap is the size of $J_{11 a, 11 \mathrm{~b}}{ }^{7 \mathrm{~b}}$ Thus, since $\left|J_{11 a, 11 b}\right|$ for II $(9.3 \mathrm{~Hz})$ is larger than for I $\left(\left|J_{11 a, 11 b}\right|=7.0 \mathrm{~Hz}\right),{ }^{14}$ one is tempted to conclude that there is less 1,6 overlap in II than I. Recently, however, some doubt was cast on the validity of the above concept by the report that the chromium tricarbonyl complex of I $\left[\mathrm{I}-\mathrm{Cr}(\mathrm{CO})_{3}\right]$, whose $\mathrm{C}_{1}-\mathrm{C}_{6}$ distance is known ${ }^{15}$ to be $0.12 \AA$ shorter than that of I, has a larger $\left|J_{11 a, 11 b}\right|(8.9 \mathrm{~Hz})^{16}$ than I. On the other hand, $J_{12 C_{11}, \mathrm{H}_{11}}(147 \pm 1 \mathrm{~Hz})^{16}$ for $\mathrm{I}-\mathrm{Cr}(\mathrm{CO})_{3}$ is larger than that for $I\left(J_{18} \mathrm{Cu}_{\mathrm{u}}, \mathrm{H}_{11}=142 \pm 2 \mathrm{~Hz}\right),{ }^{14}$ as is expected for a decreased $\mathrm{C}_{1}-\mathrm{C}_{6}$ distance. $J_{12} \mathrm{C}_{11}, \mathrm{H}_{11}(148 \pm 1$ $\mathrm{Hz})^{17}$ for II is also larger than that for I. In fact, the coupling constant data for C_{11} in II bear a strikingly close resemblance to those for C_{11} in $\mathrm{I}-\mathrm{Cr}(\mathrm{CO})_{3}$. Thus, we tentatively conclude that the $\mathrm{C}_{1}-\mathrm{C}_{6}$ distance in II may be smaller than in I. However, it seems clear that the extent of $\mathrm{C}_{1}-\mathrm{C}_{6}$ overlap in II is much less than in IV (same number of π centers in the ring), which exists in the closed form ($J_{11 \mathrm{a}, 11 \mathrm{~b}}=4.5 \mathrm{~Hz}$). ${ }^{6}$ This smaller overlap is readily understood, since increasing the σ character of the $\mathrm{C}_{1}-\mathrm{C}_{6}$ interaction serves to localize charge on $\mathrm{C}_{3}, \mathrm{C}_{4}$, and C_{5}. This is particularly harmful since the charge is removed from C_{1}, which is a tertiary . position (and thus best able to bear positive charge).

We find that dissolving I in $\mathrm{FSO}_{3} \mathrm{D}-\mathrm{SO}_{2} \mathrm{ClF}$ gives rise to II- d_{1}, where the deuteron replaces the proton whose resonance is at $\tau 5.54\left(\mathrm{H}_{2 \mathrm{a}}\right)$. The stereoselectivity is greater than $96 \%(60-\mathrm{MHz} \mathrm{nmr}$ integration). Unfortunately, it is not possible to determine which side of I the incoming proton attacks, since two final conformations are possible for II. ${ }^{18}$ In the first, the methylene group $\left(\mathrm{C}_{2}\right)$ is tipped upward, toward C_{11}. If this is the conformation, then the incoming proton must attack from the bottom side of the molecule (trans to C_{11}).

[^0]This might be favorable due to the greater electron density beneath I. ${ }^{20}$ The other conformation has C_{2} bent downward, away from C_{11}. If this conformation is the correct one, then the proton attacks from the top side of I. This latter conformation seems to allow better overlap among the p orbitals of $\mathrm{C}_{5}, \mathrm{C}_{6}$, and C_{7}. It is important to note that the data only allow one of the two conformations to be present in large amounts; however, examination of models indicates no great barrier should exist for their intercoaversion (i.e., one conformer must be more stable than the other).

It would be interesting to ob:serve the higher annulenes in strong acid. Work in that direction is currently in progress in these laboratories.

Acknowledgment. We are grateful to Dr. David Harris for assistance in taking the $100-\mathrm{MHz} \mathrm{nmr}$ spectra.
(20) In the analogous protonation of 1,6-methanocyclononatetraenyl anion [P. Radlick and W. Rosen, ibid., 83, 5308 (1967)], the incoming proton was found to attack from the bottom.
(21) National Science Foundation Preductoral Fellow, 1966-1969.

Philip Warner, ${ }^{21}$ S. Winstein
Contribution No. 2454
Department of Chemistry, University of California Los Angeles, California 90024

Received August 25, 1969

Evidence for a cis,cis,cis,trans-Cyclononatetraene in the Thermal Reorganization of
 9-Ethyl-9-methyl-cis-bicyclo[6.1.(1]nona-2,4,6-triene

Sir:
The facile thermal reorganizat on of cis-bicyclo[6.1.0]-nona-2,4,6-trienes to cis-8,9-dihydroindenes has stimulated a great deal of interest, ${ }^{1,2}$ primarily because the most reasonable mechanism is not in accord with the orbital symmetry rules for concerted reactions. ${ }^{3}$ We have recently reported the first example of the reorganization of a cis-bicyclo[6.1.0]nona-2,4,6-triene in which a trans-8,9-dihydroindene is obtained as the major product $(\mathbf{1 a} \rightarrow \mathbf{2 a}) .{ }^{1} \quad$ The mechanism of this reaction is of interest because there are several conceivable "symmetry allowed" pathways and also because its elucidation should provide additional insight into the mechanism of formation of cis-8,9-dihydroindenes. ${ }^{2}$
(E)- and (Z)-9-ethyl-9-methyl-cis-bicyclo[6.1.0]nona-$2,4,6-$ triene 4 ($\mathbf{1 b}$ and 1 c , respectively) were obtained in 67% yield as a $1.5: 1$ mixture by the general method described previously. ${ }^{1}$ The separation of these isomers was a difficult task but was successfully accomplished by employing two different gas chromatography (glpc) columns, viz. 20% DEGA on $80-100$ Diatoport S and 20% Carbowax 20 M on 100-120 silanized Chromosorb P. Both products exhibited negative distribution isotherms ${ }^{5}$ (steep front peak edge) on the former column at 130°, which permitted the purification of $\mathbf{1 b}$ (eluted first), and positive isotherms on the latter column at
(1) S. W. Staley and T. J. Henry, J. Amer. Chem. Soc., 91, 1239 (1969), and references cited therein.
(2) P. Radlick and W. Fenical, ibid., 9t, 1560 (1969).
(3) R. Hoffmann and R. B. Woodwa:d, Accounts Chem. Res., 1, 17 (1968).
(4) For a discussion of the nomenclature see J. E. Blackwood, C. L. Gladys, K. L. Loening, A. E. Petrarca, and J. E. Rush, J. Amer. Chem. Soc., 90, 509 (1968).
(5) A. I. M. Keulemans, "Gas Chromatography," 2nd ed, Reinhold Publishing Corp., New York, N. Y., 1955, Chapter 4.

[^0]: (12) W. A. Böll, Tetrahedron Lett., 5531 (1968).
 (13) It is noteworthy that as C_{7} and C_{8} come together, they do so in a manner that increases the σ-type overlap of their p orbitals, ultimately resulting in the formation of a cyclopropane banana bond.
 (14) H. Günther, Z. Naturforsch., B, 20, 948 (1965).
 (15) P. E. Baikie and O. S. Mills, Chem. Commun., 683 (1966).
 (16) H. Günther, R. Wenzl, and W. Grimme, J. Amer. Chem. Soc., 91, 3808 (1969).
 (17) Obtained, at 60 MHz , after summation of 100 scans by the Time Averaging Computer.
 (18) This is based on the fact that $\mathrm{H}_{2 \mathrm{~b}}$ and H_{3} must have a dihedral angle of $c a .90^{\circ}{ }^{18}$ between them, since $J_{2 \mathrm{~b}, 3}$ is $c a .0 \mathrm{~Hz}$. The conformations were derived from examination of models.
 (19) E. Garbisch, Jr., J. Amer. Chem. Soc., 86, 5561 (1964).

